Analysis on the Behavior of Undamped and Unstable High Frequency Resonance in DFIG System
نویسنده
چکیده
As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer Sub Synchronous Resonance (SSR) and High Frequency Resonance (HFR) in the series and parallel compensated weak network. The principle and frequency of HFR have been discussed using the Bode diagram as an analysis tool. However, the HFR can be categorized into two different types: undamped HFR (which exists in steady state) and unstable HFR (which eventually results in complete instability and divergence), both of them are not investigated before. Since both the undamped HFR and unstable HFR are critical to the output wind power quality as well as the safe and reliable operation of the DFIG system, it is meaningful to discuss them using the Nyquist Criterion from two perspectives, 1) determining either the undamped HFR or the unstable HFR happens; 2) estimating the amplitude of the undamped HFR. The influence factors, including the weak network shunt capacitance, the current PI controller parameters are discussed when estimating the amplitude of the undamped HFR. The experimental and simulation results of a 7.5 kW down-scaled DFIG setup are provided to validate the analysis on the undamped HFR and unstable HFR. Index Terms — DFIG system impedance modeling; high frequency resonance (HFR); Nyquist Criterion; undamped HFR; unstable HFR.
منابع مشابه
Damping analysis of sub-synchronous resonance (SSR) in a wind farm based on DFIG in a series compensated network
The effect of wind generator on sub-synchronous resonance (SSR) is being interested by increasing penetration of wind turbine in power systems,. Purpose of this article is to analyze SSR in a wind farm based on doubly fed induction generator (DFIG) which is connected to compensating series grid. A dynamic model for analysis of induction generator effect and Torsional Interaction (TI) has been u...
متن کاملتحلیل و بهبود قابلیت ایستادگی توربین بادی با ژنراتور القایی دو سو تغذیه در برابر افتادگی نامتقارن ولتاژ
DFIG based wind turbines (WTs) are very sensitive to grid voltage dips. This is because the grid voltage dips imposed at the connection point of the DFIG to the grid induce large voltages in the rotor windings, resulting in high rotor current. According to high penetration of DFIG based WTs, it is important that the WTs remain connected to the grid during the voltage dips and improve the grid s...
متن کاملIdentification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کاملNonlinear Dynamic Analysis of Cracked Micro-Beams Below and at the Onset of Dynamic Pull-In Instability
In this paper, the effect of the crack on dynamic behavior of cracked micro-beam in the presence of DC and AC loads are investigated. By applying the residual axial stress and fringing field stress, a nonlinear analytical model of cracked micro-beam is presented and crack is modeled by a massless rotational spring. The governing equation of the system is solved using Galerkin procedure and shoo...
متن کاملLarge Disturbance Stability Analysis of Wind Turbine Implemented with DFIG
As one of the most promising Distributed Generation (DG) sources, wind power technology has been widely developed in recent years. Doubly fed induction generator (DFIG) is currently employed as one of the most common topologies for wind turbine generators (WTGs). This generator operates as a synchronous/asynchronous hybrid generators. Therefore, it is necessary to power engineers find understan...
متن کامل